ทรี (Tree)
ทรี (Tree)ป็นโครงสร้างข้อมูลที่ความสัมพันธ์ ระหว่าง โหนดจะมัความสัมพันธ์ลดหลั่นกันเป็นลำดับ เช่น (Hierarchical Relationship) ได้มีการนำรูปแบบทรีไปประยุกต์ใช้ในงาน ต่าง ๆ อย่างแพร่หลาย สวนมากจะใชสำหรับแสดง ความสัมพันธ์ระหว่างข้อมูล เช่น แผนผังองค์ประกอบของหน่วยงานต่าง ๆ โครงสร้างสารบัญหนังสือ เป็นต้นแต่ละโหนดจะมีความสัมพันธ์กับ โหนดในระดับที่ต่ำลงมา หนึ่งระดับได้หลาย ๆโหนด เรียกโหนดดั้งกล่าวว่า โหนดแม่(Parent orMother Node)โหนดที่อยู่ต่ำกว่าโหนดแม่อยู่หนึ่งระดับเรียกว่า โหนดลูก (Child or Son Node)โหนดที่อยู่ในระดับสูงสุดและไม่มีโหนดแม่เรียกว่า โหดราก (Root Node) Data Structure โหนดที่มีโหนดแม่เป็นโหนดเดียวกัน รียกว่า โหนดพี่น้อง (Siblings)โหนดที่ไม่มีโหนดลูก เรียกว่า โหนดใบ (Leave Node)เส้นเชื่อมแสดงความสัมพันธ์ระหว่าง โหนดสองโหนดเรียกว่า กิ่ง (Branch)
นิยามของทรี
1. นิยามทรีด้วยนิยามของกราฟ ทรี คือ กราฟที่ต่อเนื่องโดยไม่มีวงจรปิด (loop)ในโครงสร้าง โหนดสองโหนด ใดๆในทรีต้องมีทางตัดต่อกันทางเดียวเท่านั้น และทรีที่มี N โหนด ต้องมีกิ่ง ทั้งหมด N-1 เส้น การเขียนรูปแบบทรี อาจเขียนได้ 4
นิยามที่เกี่ยวข้องกับทรี
1.ฟอร์เรสต์ (Forest) หมายถึง กลุ่มของทรีที่เกิดจากการเอาโหนดรากของทรีออกหรือเซตของทรีทแยกจากกัน (Disjoint Trees)2.ทรีที่มีแบบแผน (Ordered Tree) หมายถึง ทรีที่โหนดต่าง ๆ ในทรีนั้นมี ความสัมพันธ์ที่แน่นอน เช่น ไปทางขวาไปทางซ้าย เป็นต้น
3.ทรีคล้าย (Similar Tree) คือทรีที่มีโครงสร้างเหมือนกันหรือทรีที่มีรูปร่างของทรีเหมือนกันโดยไม่คำนึงถึงข้อมูลที่อยู่ในแต่ละโหนด4.ทรีเหมือน (Equivalent Tree) คือ ทรีที่เหมือนกันโดยสมบูรณ์โดยต้องเป็นทรีที่คล้ายกันและแต่ละโหนดในตำแหน่งเดียวกันมีข้อมูลเหมือนกัน
5.กำลัง (Degree) หมายถึงจำนวนทรีย่อยของโหนด นั้น ๆ เช่นในรูปโหนด “B” มีกำลังเป็น 1 เพราะมีทรีย่อย คือ {“D”}ส่วนโหนด “C” มีค่ากำลังเป็นสองเพราะมีทรีย่อย คือ {“E”, “G”, “H”, “I”} และ {“F”}
6.ระดับของโหนด (Level of Node) คือ ระยะทางในแนวดิ่งของโหนดนั้น ๆ ที่อยู่ห่างจากโหนดราก เมื่อกำหนดให้ โหนดรากของทรีนั้นอยู่ระดับ 1 และกิ่งแต่ละกิ่งมีความเท่ากันหมด คือ ยาวเท่ากับ 1หน่วยซึ่งระดับของโหนดจะเท่ากับจำนวนกิ่งที่น้อยที่สุดจากโหนดรากไปยังโหนดใด ๆ บวกด้วย 1และจำนวนเส้นทางตามแนวดิ่งของโหนดใด ๆ ซึ่งห่างจากโหนดราก เรียกวา ความสูง (Height)หรือความ ลึก (Depth)
การแทนที่ทรีในหน่วยความจำหลัก
การแทนที่โครงสร้างข้อมูลแบบทรีในความจำหลักจะมีพอยเตอร์เชื่อมโยงจากโหนดแม่ไปยังโหนดลูก แต่ละโหนดต้องมีลิงค์ฟิลด์เพื่อเก็บที่อยู่ของโหนดลูกต่าง ๆ นั้นคือจำนวน ลิงคฟิลด์ของแต่ละโหนดขึ้นอยู่กับจำนวนของโหนดลูกการแทนที่ทรี ซึ่งแต่ละโหนดมีจำนวนลิงค์ฟิลด์ไม่เท่ากันทำให้ยากต่อการปฏิบัติการ วิธีการแทนที่ที่ง่ายที่สุดคือ ทำให้แต่ละโหนดมีจำนวนลิงคฟิลด์เท่ากันโดยอาจใช่วิธีการต่อไปนี้
การแทนที่โครงสร้างข้อมูลแบบทรีในความจำหลักจะมีพอยเตอร์เชื่อมโยงจากโหนดแม่ไปยังโหนดลูก แต่ละโหนดต้องมีลิงค์ฟิลด์เพื่อเก็บที่อยู่ของโหนดลูกต่าง ๆ นั้นคือจำนวน ลิงคฟิลด์ของแต่ละโหนดขึ้นอยู่กับจำนวนของโหนดลูกการแทนที่ทรี ซึ่งแต่ละโหนดมีจำนวนลิงค์ฟิลด์ไม่เท่ากันทำให้ยากต่อการปฏิบัติการ วิธีการแทนที่ที่ง่ายที่สุดคือ ทำให้แต่ละโหนดมีจำนวนลิงคฟิลด์เท่ากันโดยอาจใช่วิธีการต่อไปนี้
1.โหนดแต่ละโหนดเก็บพอยเตอร์ชี้ไปยังโหนดลูก ทุกโหนด การแทนที่ทรีด้วยวิธีนี้จะให้จำนวนฟิลด์ในแต่ละ โหนดเท่ากันโดยกำหนดใหม่ขนาดเท่ากับจำนวนโหนดลูกของโหนดที่มีลูกมากที่สุด โหนดใดไม่มีโหลดลูกก็ให้ค่า พอยเตอร์ในลิงค์ฟิลด์นั้นมีค่าเป็น Null และให้ลิงค์ฟิลด์แรกเก็บค่าพอยเตอร์ชี้ไปยังโหนด ลูกลำดับ ที่หนึ่ง ลิงค์ฟิลด์ที่สองเก็บค่าพอยเตอร์ชี้ไปยังโหนดลูก ลำดับที่สองและลิงค์ฟิลด์อื่นเก็บค่าพอยเตอร์ของโหนดลูก ลำดับถัดไปเรื่อย ๆ
การแทนทรีด้วยโหนดขนาดเท่ากันค่อนข้างใช้เนื้อที่จำนวนมากเนื่องจากแต่ละโหนดมี จำนวนโหนดลูกไม่เท่ากันหรือบางโหนดไม่มี โหนดลูกเลยถ้าเป็นทรีที่แต่ละโหนดมีจำนวนโหนดลูกที่แตกต่างกันมากจะเป็นการสิ้นเปลือง เนื้อที่ในหน่วยความจำโดยเปล่าประโยชน์
2.แทนทรีด้วยไบนารีทรีเป็นวิธีแก้ปัญหาเพื่อลดการ สิ้นเปลืองเนื้อที่ในหน่วยความจำก็คือ กำหนดลิงค์ฟิลด์ใหม่จำนวนน้อยที่สุดเท่าที่จำเป็นเท่านั้นโดยกำหนดให้แต่ละโหนดมีจำนวนลิงค์ฟิลด์สองลิงค์ฟิลด์-ลิงค์ฟิลด์แรกเก็บที่อยู่ของโหนดลูกคนโต-ลิงค์ฟิลด์ทสองเก็บที่อยู่ของโหนดพี่น้องที่เป็นโหนดถัดไปโหนดใดไม่มีโหนดลูกหรือไม่มีโหนดพี่น้องให้ค่าพอยนเตอร์ใน ลิงค์ฟิลด์มีค่าเป็น Null
ไบนารีทรีที่ทุก ๆ โหนดมีทรีย่อยทางซ้ายและทรีย่อยทางขวา ยกเว้นโหนดใบ และโหนดใบทุกโหนดจะต้องอยู่ที่ระดับเดียวกันเรียกว่า ไบนารีทรีแบบสมบูรณ์ (complete binary tree)สามารถคำนวณจำนวนโหนดทั้งหมดในไบนารีทรีแบบสมบูรณ์ได้ถ้ากำหนดให้ Lคือระดับของโหนดใด ๆ และ N คือจำนวนโหนดทั้งหมดในทรีจะได้ว่า
ระดับ 1 มีจำนวนโหนด 1 โหนด
ระดับ 2 มีจำนวนโหนด 3 โหนด
ระดับ 3 มีจำนวนโหนด 7 โหนด
ระดับ L มีจำนวนโหนด 2L - 1โหนด
นั้นคือ จำนวนโหนดทั้งหมดในทรีสมบูรณ์ที่ มี L ระดับ สามารถคำนวณได้จากสูตรดั้งนี้
ระดับ 1 มีจำนวนโหนด 1 โหนด
ระดับ 2 มีจำนวนโหนด 3 โหนด
ระดับ 3 มีจำนวนโหนด 7 โหนด
ระดับ L มีจำนวนโหนด 2L - 1โหนด
นั้นคือ จำนวนโหนดทั้งหมดในทรีสมบูรณ์ที่ มี L ระดับ สามารถคำนวณได้จากสูตรดั้งนี้
ขั้นตอนการแปลงทรีทั่วๆ ไปให้เป็นไบนารีทรี มีลำดับขั้นตอนการแปลง ดั้งต่อไปนี้
1. ให้โหนดแม่ชี้ไปยังโหนดลูกคนโต แล้วลบความสัมพันธ์ ระหว่างโหนดแม่และโหนดลูกอื่น ๆ
2. ให้เชื่อมความสัมพันธ์ระหว่างโหนดพี่น้อง
3. จบให้ทรีย่อยทางขวาเอียงลงมา 45 องศา
การท่องไปในไบนารีทรี
ปฏิบัติการที่สำคัญในไบนารีทรี คือ การท่องไปในไบนารีทรี (Traversing Binary Tree) เพื่อเข้าไปเยือนทุก ๆโหนดในทรี ซึ่งวิธีการท่องเข้าไปต้องเป็นไปอย่างมีระบบแบบแผน สามารถเยือนโหนดทุก ๆโหนด ๆ ละหนึ่งครั้งวิธีการท่องไปนั้นมีด้วยกันหลายแบบแล้วแต่ว่าต้องการลำดับขั้นตอนการเยือนอย่างไร โหนดที่ถูกเยือนอาจเป็นโหนดแม่ (แทนด้วย N)ทรีย่อยทางซ้าย (แทนด้วย L)หรือทรีย่อยทางขวา (แทนด้วย R)
ปฏิบัติการที่สำคัญในไบนารีทรี คือ การท่องไปในไบนารีทรี (Traversing Binary Tree) เพื่อเข้าไปเยือนทุก ๆโหนดในทรี ซึ่งวิธีการท่องเข้าไปต้องเป็นไปอย่างมีระบบแบบแผน สามารถเยือนโหนดทุก ๆโหนด ๆ ละหนึ่งครั้งวิธีการท่องไปนั้นมีด้วยกันหลายแบบแล้วแต่ว่าต้องการลำดับขั้นตอนการเยือนอย่างไร โหนดที่ถูกเยือนอาจเป็นโหนดแม่ (แทนด้วย N)ทรีย่อยทางซ้าย (แทนด้วย L)หรือทรีย่อยทางขวา (แทนด้วย R)
มีวิธีการท่องเข้าไปในทรี 6 วิธี คือ NLR LNR LRN NRL RNL และ RLN แต่วิธีการท่องเข้าไปไบนารีทรีที่นิยมใช้กันมากเป็นการท่องจากซ้ายไปขวา 3 แบบแรกเท่านั้นคือ NLR LNR และ LRN ซึ่งลักษณะการนิยามเป็นนิยามแบบ รีเคอร์ซีฟ(Recursive) ซึ่งขั้นตอนการท่องไปในแต่ละแบบมีดังนี้
1. การท่องไปแบบพรีออร์เดอร์(Preorder Traversal) เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ ในทรีด้วยวิธีNLR มีขั้นตอนการเดินดังต่อไปนี้
(1) เยือนโหนดราก
(2) ท่องไปในทรีย่อยทางซ้ายแบบพรีออร์เดอร์
(3) ท่องไปในทรีย่อยทางขวาแบบพรีออร์เดอร์
1. การท่องไปแบบพรีออร์เดอร์(Preorder Traversal) เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ ในทรีด้วยวิธีNLR มีขั้นตอนการเดินดังต่อไปนี้
(1) เยือนโหนดราก
(2) ท่องไปในทรีย่อยทางซ้ายแบบพรีออร์เดอร์
(3) ท่องไปในทรีย่อยทางขวาแบบพรีออร์เดอร์
(1) ท่องไปในทรีย่อยทางซ้ายแบบอินออร์เดอร์
(2) เยือนโหนดราก
(3) ท่องไปในทรีย่อยทางขวาแบบอินออร์เดอร์
3. การท่องไปแบบโพสออร์เดอร์(Postorder Traversal)เป็นการเดินเข้าไปเยือนโหนดต่าง ๆในทรีด้วยวิธี LRN มีขั้นตอนการเดินดังต่อไปนี้
(1) ท่องไปในทรีย่อยทางซ้ายแบบโพสต์ออร์เดอร์
(2) ท่องไปในทรีย่อยทางขวาแบบโพสต์ออร์เดอร์
เอ็กซ์เพรสชันทรี (Expression Tree)
เป็นการนำเอาโครงสร้างทรีไปใช้เก็บนิพจน์ทางคณิตศาสตร์โดยเป็นไบนารีทรี ซึ่งแต่ละโหนดเก็บตัวดำเนินการ (Operator) และและตัวถูกดำเนินการ(Operand) ของนิพจน์คณิตศาสตร์นั้น ๆ ไว้ หรืออาจจะเก็บค่านิพจน์ทางตรรกะ (Logical Expression)นิพจน์เหล่านี้เมื่อแทนในทรีต้องคำนึงลำดับขั้นตอนในการคำนวณตามความสำคัญของเครื่องหมายด้วยโดยมีความสำคัญตามลำดับดังนี้
เป็นการนำเอาโครงสร้างทรีไปใช้เก็บนิพจน์ทางคณิตศาสตร์โดยเป็นไบนารีทรี ซึ่งแต่ละโหนดเก็บตัวดำเนินการ (Operator) และและตัวถูกดำเนินการ(Operand) ของนิพจน์คณิตศาสตร์นั้น ๆ ไว้ หรืออาจจะเก็บค่านิพจน์ทางตรรกะ (Logical Expression)นิพจน์เหล่านี้เมื่อแทนในทรีต้องคำนึงลำดับขั้นตอนในการคำนวณตามความสำคัญของเครื่องหมายด้วยโดยมีความสำคัญตามลำดับดังนี้
- ฟังก์ชัน
- วงเล็บ
- ยกกำลัง
- เครื่องหมายหน้าเลขจำนวน (unary)
- คูณ หรือ หาร
- บวก หรือ ลบ
- ถ้ามีเครื่องหมายที่ระดับเดียวกันให้ทำจากซ้ายไปขวา
การแทนนิพจน์ในเอ็กซ์เพรสชันทรี ตัวถูกดำเนินการจะเก็บอยู่ที่โหนดใบส่วนตัวดำเนินการจะเก็บในโหนดกิ่งหรือโหนดที่ไม่ใช่โหนดใบเช่น นิพจน์ A + B สามารถแทนในเอ็กซ์เพรสชันทรีได้ดังนี้
- วงเล็บ
- ยกกำลัง
- เครื่องหมายหน้าเลขจำนวน (unary)
- คูณ หรือ หาร
- บวก หรือ ลบ
- ถ้ามีเครื่องหมายที่ระดับเดียวกันให้ทำจากซ้ายไปขวา
การแทนนิพจน์ในเอ็กซ์เพรสชันทรี ตัวถูกดำเนินการจะเก็บอยู่ที่โหนดใบส่วนตัวดำเนินการจะเก็บในโหนดกิ่งหรือโหนดที่ไม่ใช่โหนดใบเช่น นิพจน์ A + B สามารถแทนในเอ็กซ์เพรสชันทรีได้ดังนี้
ไบนารีเซิร์ชทรี
ไบนารีเซิร์ชทรี (Binary Search Tree)เป็นไบนารีทรีที่มีคุณสมบัติที่ว่าทุก ๆ โหนดในทรี ค่าของโหนดรากมีค่ามากกว่าค่าของทุกโหนดในทรีย่อยทางซ้าย และมีค่าน้อยกว่าหรือเท่ากับค่าของทุกโหนดในทรีย่อยทางขวาและในแต่ละทรีย่อยก็มี คุณสมบัติเช่นเดียวกัน
ไบนารีเซิร์ชทรี (Binary Search Tree)เป็นไบนารีทรีที่มีคุณสมบัติที่ว่าทุก ๆ โหนดในทรี ค่าของโหนดรากมีค่ามากกว่าค่าของทุกโหนดในทรีย่อยทางซ้าย และมีค่าน้อยกว่าหรือเท่ากับค่าของทุกโหนดในทรีย่อยทางขวาและในแต่ละทรีย่อยก็มี คุณสมบัติเช่นเดียวกัน
ปฏิบัติการในไบนารีเซิร์ชทรี ปฏิบัติการเพิ่มโหนดเข้าหรือดึงโหนดออกจากไบนารีเซิร์ชทรีค่อนข้างยุ่งยากกว่าปฏิบัติการในโครงสร้างอื่น ๆเนื่องจากหลังปฏิบัติการเสร็จเรียบร้อยแล้วต้องคำนึงถึงความเป็นไบนารีเซิร์ชทรีของทรีนั้นด้วยซึ่งมีปฏิบัติการดังต่อไปนี้
(1) การเพิ่มโหนดในไบนารีเซิร์ชทรี การเพิ่มโหนดใหม่เข้าไปในไบนารีเซิร์ชทรี ถ้าทรีว่างโหนดที่เพิ่มเข้าไปก็จะเป็นโหนดรากของทรี ถ้าทรีไม่ว่างต้องทำการตรวจสอบว่าโหนดใหม่ที่เพิ่มเข้ามานั้นมีค่ามากกว่าหรือน้อยกว่าค่าที่โหนดราก ถ้ามีค่ามากกว่าหรือเท่ากันจะนำโหนดใหม่ไปเพิ่มในทรีย่อยทางขวาและถ้ามีค่าน้อยกว่านำโหนดใหม่ไปเพิ่มในทรีย่อยทางซ้ายในทรีย่อยนั้นต้องทำการเปรียบเทียบในลักษณะเดียวกันจนกระทั่งหาตำแหน่งที่สามารถเพิ่มโหนดได้ ซึ่งโหนดใหม่ที่
(2) การดึงโหนดในไบนารีเซิร์ชทรีหลังจากดึงโหนดที่ต้องการออกจากทรีแล้วทรีนั้นต้องคงสภาพไบนารีเซิร์ชทรีเหมือนเดิมก่อนที่จะทำการดึงโหนดใด ๆ ออกจากไบนารีเซิร์ชทรี ต้องค้นหาก่อนว่าโหนดที่ต้องการดึงออกอยู่ที่ตำแหน่งไหนภายในทรีและต้องทราบที่อยู่ของโหนดแม่โหนดนั้นด้วยแล้วจึงทำการดึงโหนดออกจากทรีได้ ขั้นตอนวิธีดึงโหนดออกอาจแยกพิจารณาได้ 3กรณีดังต่อไปนี้
ก. กรณีโหนดที่จะดึงออกเป็นโหนดใบการดึงโหนดใบออกในกรณีนี้ทำได้ง่ายที่สุดโดยการดึงโหนดนั้นออกได้ทันที เนื่องจากไม่กระทบกับโหนดอื่นมากนัก วิธีการก็คือให้ค่าในลิงค์ฟิลด์ของโหนดแม่ซึ่งเก็บที่อยู่ของโหนดที่ต้องการดึงออกให้มีค่าเป็น Null
ข. กรณีโหนดที่ดึงออกมีเฉพาะทรีย่อยทางซ้ายหรือทรีย่อยทางขวาเพียงด้านใดด้านหนึ่ง วิธีการดึงโหนดนี้ออกสามารถใช้วิธีการเดียวกับการดึงโหนดออกจากลิงค์ลิสต์ โดยให้โหนดแม่ของโหนดที่จะดึงออกชี้ไปยังโหนดลูกของโหนดนั้นแทน
ค. กรณีโหนดที่ดึงออกมีทั้งทรีย่อยทางซ้ายและทรีย่อยทางขวาต้องเลือกโหนดมาแทนโหนดที่ถูกดึงออก โดยอาจจะเลือกมาจากทรีย่อยทางซ้ายหรือทรีย่อยทางขวาก็ได้
- ถ้าโหนดที่มาแทนที่เป็นโหนดที่เลือกจากทรีย่อยทางซ้ายต้องเลือกโหนดที่มีค่ามากที่สุดในทรีย่อยทางซ้ายนั้น
- ถ้าโหนดที่จะมาแทนที่เป็นโหนดที่เลือกมาจากทรีย่อยทางขวา ต้องเลือกโหนดที่มีค่าน้อยที่สุดในทรีย่อยทางขวานั้น
- ถ้าโหนดที่มาแทนที่เป็นโหนดที่เลือกจากทรีย่อยทางซ้ายต้องเลือกโหนดที่มีค่ามากที่สุดในทรีย่อยทางซ้ายนั้น
- ถ้าโหนดที่จะมาแทนที่เป็นโหนดที่เลือกมาจากทรีย่อยทางขวา ต้องเลือกโหนดที่มีค่าน้อยที่สุดในทรีย่อยทางขวานั้น
ไม่มีความคิดเห็น:
แสดงความคิดเห็น